The Dirichlet Problem for Singularly Perturbed Elliptic Equations
نویسنده
چکیده
There has been much work on various singularly perturbed partial differential equations or systems. Such equations or systems depend on some small parameters ε > 0, solutions denoted as uε. There are at least two types of questions being investigated. The first type is to study possible behavior of uε as ε tends to zero. The second is to actually construct, by various methods, such solutions. In this paper we mainly present some results of the second type. We will study some specific singularly perturbed partial differential equations. However, the methods we used are useful in studying other problems as well. Let Ω ⊂ Rn be a bounded domain with smooth boundary. We consider { −ε2∆ũ+ ũ = ũq , ũ > 0 , in Ω , ũ ∣∣ ∂Ω = 0 , (0.1)
منابع مشابه
Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملA Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts
In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...
متن کاملExistence Results for a Dirichlet Quasilinear Elliptic Problem
In this paper, existence results of positive classical solutions for a class of second-order differential equations with the nonlinearity dependent on the derivative are established. The approach is based on variational methods.
متن کاملA hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer
The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...
متن کاملAnalytic solutions for the Stephen's inverse problem with local boundary conditions including Elliptic and hyperbolic equations
In this paper, two inverse problems of Stephen kind with local (Dirichlet) boundary conditions are investigated. In the first problem only a part of boundary is unknown and in the second problem, the whole of boundary is unknown. For the both of problems, at first, analytic expressions for unknown boundary are presented, then by using these analytic expressions for unknown boundaries and bounda...
متن کامل